AP Calculus – Unit 2 Advanced Differentiation Practice Problems

(1) If
$$y = \ln\left(\frac{e^x}{e^{x}-10}\right)$$
, then $\frac{dy}{dx} =$
(A) $x - \frac{e^x}{e^{x}-10}$ (B) $-\frac{1}{e^x}$ (C) $\frac{10}{10-e^x}$ (D) 0 (E) $\frac{e^{x}-20}{e^{x}-10}$

(2) Find $\frac{dy}{dx}$ of $y = (2x)5^{x^2}$

(3) A particle is moving along a linear path. The path of the particle is modeled by $s(t) = t^2 - 6t - 4$, where t > 0. Determine the total distance the particle travels over the first four seconds.

Use the following information to answer questions 4 and 5. Consider the curve defined by $x^2 + xy + y^2 = 27$ (4) Write an expression for the slope of the curve at any point (*x*,*y*).

(5) Find the points on the curve where the lines tangent to the curve are vertical and the *y* value is positive.

(6) Find $\frac{dy}{dx}$ of $y = \log_3\left(\frac{2}{x}\right)$

(7) Find the slope of the curve $y^3 - xy^2 = 4$ at the point where y = 2.

(8) Find
$$\frac{d}{dx} [\sin(\tan^{-1}[2x])]$$

(A) $\frac{2(4x^2+1)^{3/2}-8x^2}{(4x^2+1)^{3/2}}$
(B) $\frac{-2}{(4x^2+1)^{3/2}}$
(C) $\frac{2}{1+4x^2}$
(D) $\frac{(4x^2+1)^{3/2}-4x^2}{(4x^2+1)^{3/2}}$
(E) $\frac{2}{(4x^2+1)^{3/2}}$

(9) Find the value of $\frac{dy}{dx}$ if $y = \ln(x^2 + y^2)$ at (1,0).

(12) If $y = e^{-x} \ln x$, what does $\frac{dy}{dx}$ equal when x = 1?

(13) The tangent to the curve $y = 2xe^{-x}$ is horizontal when x =

(A) -2 (B) 1 (C) -1 (D) $\frac{1}{e}$ (E) None of the Above

(14) Differentiate: $y = [\sin x]^{\ln x}$

(15) If f(g(x)) = x = g(f(x)), use the chart below to determine g'(4).

	F(x)	G(x)	F'(x)
X = 1	1	-4	-4
X = 2	4	-2	5
X = 3	2	8	7
X = 4	-3	2	1⁄2

(16) Using the table to the right, determine the derivative of each expression.

(a)
$$\frac{2f(x)}{g(x)+1}$$
 at x = 0 (b) $g[f(x) + x]$ at x = 1

	F(x)	G(x)	F'(x)	G'(x)
X = -2	1	-4	5	-1
$\mathbf{X} = 0$	7	1	0	-3
X = 1	-3	3	-3	3

(17) Find
$$\frac{dy}{dx}$$
: $y = x^2 \sin^{-1}(1 - 2x)$

(18) Assume that f(x) is one-to-one and f(a) = b. Which of the statements is false:

(A) $f^{-1}(x)$ will have a reciprocal slope of f(x) at corresponding points.

(B) $f^{-1}(b) = a$

(C)
$$(f^{-1})'(b) = \frac{1}{f'(a)}$$

(D) The graphs of f(x) and $f^{-1}(x)$ are symmetrical over the line y = x

(E) None of the Above

(19) $\lim_{x \to \infty} \frac{\ln x}{2x}$

(20) Let *f* be the function defined by $f(x) = x^2 - 2x + 3e^x$. If $g(x) = f^{-1}(x)$ for all *x* and the point (0,3) is on the graph of *f*, what is the value of g'(3)?

The graph below shows the velocity v = f(t) of a particle, in ft/sec, moving along a horizontal line $0 \le t \le 7$ seconds. Use the graph to answer questions 21 - 24.

(21) On what open intervals or at what time(s) 0 < t < 7 is the particle moving backwards? Justify.

(22) On what open intervals or at what time(s) 0 < t < 7 is the particle's acceleration zero?

(23) On what open intervals or at what time(s) 0 < t < 7 is the particle's speed increasing? Justify.

(24) On what open intervals or at what time(s) 0 < t < 7 how many times the particle change directions?

(25) Evaluate the limit
$$\lim_{h \to 0} \frac{3^{h}-1}{2h}$$
.
(a) 1 (b) 0 (c) ∞ (d) $\frac{\ln 3}{2}$ (e) DNE

(26) Evaluate the limit $\lim_{h \to 0} \frac{2 \ln(e^2 + h) - 2 \ln e^2}{h}.$

The table below shows the position s of a particle moving continuously along a line for various times over the interval [0,6]. Use the table to answer questions 27 - 29.

t secs	0	1.2	2.5	4.0	5.1	6
s(t) feet	3	5	1	8	10	12

(27) What is the particle's average velocity over the interval [4,6]? Show the work that leads to your answer.

(28) Estimate the velocity of the particle at t = 1 second. Show the work that leads to your answer.

(29) What is the displacement of the particle over the interval [0,6]?

(30) Write the equation of the tangent to the graph $1 + \ln xy = e^{x-y}$ at the point (1,1)