Sequences - Classwork

In mathematics, we define a sequence as a set of numbers that has an identified first member, second member, third member, etc. It is a function whose domain in the set of positive integers. But rather than use standard function notation, we use subscript notation because it better defines the sequence.
$1,2,3,4, \ldots n, \ldots$ The first term in the sequence is a_{1}, the 2 nd is a_{2}, the nth is a_{n}
| | | | |
$a_{1}, a_{2}, a_{3}, a_{4}, \quad a_{n}, \ldots \quad$ The entire sequence is denoted by $\left\{a_{n}\right\}$.
Example 1) Write the terms of the sequence $\left\{a_{n}\right\}=\left\{4+(-1)^{n}\right\}$

Example 2) Write the terms of the sequence $\left\{b_{n}\right\}=\left\{\frac{3 n}{n+1}\right\}$

Example 3) Write the terms of the sequence $\left\{c_{n}\right\}=\left\{\frac{n^{2}-1}{2^{n}-1}\right\}$.

We are mostly interested in sequences whose terms approach a limiting value. Such sequences are said to converge. The sequence $\left\{\frac{1}{2^{n}}\right\}=\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \ldots$ converges to zero. We say that $\lim _{n \rightarrow \infty} a_{n}=0$. If a sequence has no limit (gets infinitely big or small or oscillates between values), the sequence is said to diverge.

We are making a comparison to functions that have a limit as opposed to sequences having a limit. If f is a function such that $\lim _{x \rightarrow \infty} f(x)=L$ and $\left\{a_{n}\right\}$ is a sequence such that $f(n)=\left\{a_{n}\right\}$ for every positive integer n, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Example 4) Find $\lim _{n \rightarrow \infty} a_{n}$ if $a_{n}=\left(1-\frac{1}{n}\right)^{n}$.
We know that by L'Hopital's rule, $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=$ \qquad
So, $\lim _{n \rightarrow \infty} a_{n}=$ \qquad
Example 5) Determine whether the sequence $\left\{a_{n}\right\}=\left\{5+(-1)^{n}\right\}$ converges or diverges.

Example 6) Determine whether the sequence $\left\{b_{n}\right\}=\left\{\frac{n}{1-50 n}\right\}$ converges or diverges.

Example 7) Show that the sequence whose nth term is $a_{n}=\frac{n^{2}}{3^{n}-3}$ converges.

The Squeeze Theorem for Sequences

If both $\lim _{x \rightarrow \infty} a_{n}=L$ and $\lim _{x \rightarrow \infty} b_{n}=L$, and there exists an integer n such that $a_{n} \leq c_{n} \leq b_{n}$ for all $n>N$, then $\lim _{x \rightarrow \infty} c_{n}=L$ as well.

Example 8) Show that the sequence $\left\{(-1)^{n} \frac{1}{n!}\right\}$ converges and find its limit.
You can make a chart to examine the function: It appears that the limit is \qquad

n	0	1	2	3	4	5	6
$\left\{(-1)^{n} \frac{1}{n!}\right\}$							

But this is not a proof. To use the squeeze theorem, we need two convergent sequences. Let's examine $a_{n}=\frac{1}{3^{n}}$ and $b_{n}=-\frac{1}{3^{n}}$ both of which converge to zero. Again, complete the chart for

n	0	1	2	3	4	5	6
$n!$							
3^{n}							

What you can now see that if $n \geq 4$ then $2^{n}<n!$. That means that $-\frac{1}{2^{n}} \leq(-1)^{n} \frac{1}{n!} \leq \frac{1}{2^{n}}$ for $n>4$ By the Squeeze theorem, $\lim _{x \rightarrow \infty}(-1)^{n} \frac{1}{n!}=0$

Note how $-\frac{1}{2^{n}} \leq(-1)^{n} \frac{1}{n!} \leq \frac{1}{2^{n}}$ for $n>4$.
Also realize that $(-1)^{n} \frac{1}{n!}$ is only defined
for integer values of n.

This example is instructive because it shows that although $\lim _{x \rightarrow \infty} 3^{n}=\infty$ and $\lim _{x \rightarrow \infty} n!=\infty, n!$ grows so much faster than 3^{n} and hence $\lim _{x \rightarrow \infty} \frac{3^{n}}{n!}=0$. In fact, it can be shown that $\lim _{x \rightarrow \infty} \frac{k^{n}}{n!}=0$.

Although this course does not require you to be able to generate the nth term of a sequence if you are given the terms of the sequence, it is kind of fun to do so. Can you find the nth term of the following sequences? a. through d. are relatively simple and e. and f. are harder.
a. $\frac{2}{1}, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9}, \ldots$
b. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$
c. $\frac{1}{2}, \frac{\sqrt{2}}{3}, \frac{\sqrt[3]{3}}{4}, \frac{\sqrt[4]{4}}{5}, \ldots$
d. $1,0,-1,0,1,0,-1, \ldots$
e. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{15}, \ldots$
f. $-\frac{2}{1}, \frac{8}{2},-\frac{26}{6}, \frac{80}{24},-\frac{242}{120}, \ldots$

Finally, we define a monotonic sequence as a sequence whose terms get successively larger or smaller.
A sequence $\left\{a_{n}\right\}$ is monotonic if its terms are nondecreasing: $a_{1} \leq a_{2} \leq a_{3} \leq a_{4} \leq \ldots \leq a_{n} \leq \ldots$ or
A sequence $\left\{a_{n}\right\}$ is monotonic if its terms are nonincreasing: $a_{1} \geq a_{2} \geq a_{3} \geq a_{4} \geq \ldots \geq a_{n} \geq \ldots$
Monotonic curves are bounded either above or below (or both) by some number M. If a sequence is bounded and monotonic, then it converges.

monotonoic and bounded

Not monotonic but bounded

Not monotonic (2nd term) but bounded

monotonic and bounded

Sequences - Homework

Write the first 5 terms of the sequence.

1. $a_{n}=\frac{2 n}{n+2}$
2. $a_{n}=\cos n \pi$
3. $a_{n}=(-1)^{n}\left(2-\frac{1}{n}+\frac{1}{n^{2}}\right)$
4. $a_{n}=\frac{(2 n)!}{(n+1)!}$

Write an expression for the nth term of the sequence
5. $1,5,9,13, \ldots$
6. $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots$
7. $2,-1, \frac{1}{2},-\frac{1}{4}, \frac{1}{8}, \ldots$
8. $-1,2,7,14,23$

In the following sequences, determine the convergence or divergence with the given nth term
9. $a_{n}=(-1)^{n}\left(\frac{n}{n+1}\right)$
10. $a_{n}=5+(-1)^{n}$
11. $a_{n}=\frac{3 n^{2}-3 n+8}{4 n^{2}+1}$
12. $a_{n}=\frac{2 \sqrt{n}}{3 \sqrt{n}+1}$
13. $a_{n}=\frac{\ln \left(n^{3}\right)}{n}$
14. $a_{n}=\frac{4^{n}}{5^{n}}$
15. $a_{n}=\frac{(n+2)!}{(n+1)!}$
16. $a_{n}=\frac{(n-2)!}{(n+1)!}$
17. $a_{n}=n \sin \frac{1}{n}$

In the following exercises, use your grapher to determine whether the sequence is monotonic and if it is bounded.
18. $a_{n}=5-\frac{1}{n}$
19. $a_{n}=\frac{\sin n+\cos n}{n}$
20. $a_{n}=n e^{-n / 2}$
21. $a_{n}=\left(\frac{4}{5}\right)^{n}$
22. $a_{n}=\left(\frac{5}{4}\right)^{n}$
23. $a_{n}=\frac{n}{3^{n+1}}$

