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&n mathematics, we define a se;uence as a set of numbers that has an identified first member, second member,
third member, etc. &t is a function whose domain in the set of positive integers. @ut rather than use standard
function notation, we use subscript notation because it better defines the se;uence.
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De are mostly interested in se;uences whose terms approach a limiting value. Such se;uences are said to
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Qlthough this course does not re;uire you to be able to generate the nth term of a se;uence if you are given the
terms of the se;uence, it is kind of fun to do so.  ban you find the nth term of the following se;uences\ a. through
d. are relatively simple and e. and f. are harder.
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Binally, we define a C%*%$%*)# se;uence as a se;uence whose terms get successively larger or smaller.

Q se;uence an* + is monotonic if its terms are nondecreasingW a a a a an1 2 3 4$ $ $ $ ) $ $)   or

Q se;uence an* + is monotonic if its terms are nonincreasingW  a a a a an1 2 3 4= = = = ) = =)  

Monotonic curves are bounded either above or below Jor bothH by some number M.  &f a se;uence is bounded and
monotonic, then it converges.
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Drite the first L terms of the se;uence.
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Drite an expression for the nth term of the se;uence
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In the following sequences, determine the convergence or divergence with the given nth term
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In the following exercises, use your grapher to determine whether the sequence is monotonic and if it is bounded.
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