Power and Taylor Series Practice Problems

Part 1: Multiple Choice

1. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(x + \frac{3}{2}\right)^n$ converges?

 $(A) - \frac{5}{2} < x < -\frac{1}{2} \qquad (B) - \frac{5}{2} < x \le -\frac{1}{2} \qquad (C) - \frac{5}{2} \le x < -\frac{1}{2} \qquad (D) - \frac{1}{2} < x < \frac{1}{2} \qquad (E) x < -\frac{1}{2}$

2. Which of the following is the Maclaurin series for $\frac{1}{(1-x)^2}$?

(A) $1 - x + x^2 - x^3 + \cdots$

(B) $1 - 2x + 3x^2 - 4x^3 + \cdots$

(C) $1 + 2x + 3x^2 + 4x^3 + \cdots$

(D) $1 + x^2 + x^4 + x^6 + \cdots$

(E) $x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$

3. Let $P(x) = 3 - 3x^2 + 6x^4$ be the fourth-degree Taylor polynomial for the function f about x = 0. What is the value of $f^{(4)}(0)$?

(A) 0

- (B) $\frac{1}{4}$
- (C) 6
- (D) 24
- **(E) 144**
- 4. What is the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n \cdot 2^n}$?

(A) 1 < x < 5

- (B) $1 \le x < 5$
- (C) $1 \le x \le 5$
- (D) 2 < x < 4
- (E) $2 \le x \le 4$
- 5. What is the coefficient of x^2 in the Taylor series for $\sin^2 x$ about = 0?

(A) - 2

- (B) -1
- (C) 0
- **(D)** 1
- (E) 2

- 6. The coefficient of $\left(x \frac{\pi}{4}\right)^3$ in the Taylor series about $\frac{\pi}{4}$ of $f(x) = \cos x$ is

- (A) $\frac{\sqrt{3}}{12}$ (B) $-\frac{1}{12}$ (C) $\frac{1}{12}$ (D) $\frac{1}{6\sqrt{2}}$ (E) $-\frac{1}{3\sqrt{2}}$
- 7. The nth derivative of a function f at x = 0 is given by $f^{(n)}(0) = (-1)^{n+1} \frac{n+2}{3^n(n+1)}$ for all $n \ge 0$. Which of the following is the Maclaurin series of f?
 - (A) $2 \frac{x}{2} + \frac{4x^2}{27} \frac{5x^3}{1088} + \cdots$
 - (B) $-2 + \frac{x}{2} \frac{4x^2}{27} + \frac{5x^3}{108} + \cdots$
 - (C) $2 + \frac{x}{2} \frac{2x^2}{27} + \frac{5x^3}{648} + \cdots$
 - (D) $-2 + \frac{3x}{2} \frac{2x^2}{27} + \frac{5x^3}{649} + \dots$
 - (E)-2 + $\frac{x}{2}$ $\frac{2x^2}{27}$ + $\frac{5x^3}{648}$ + ...
- 8. A function f has Maclaurin series given by $\frac{x^4}{2!} + \frac{x^5}{3!} + \frac{x^6}{4!} + \dots + \frac{x^{n+3}}{(n+1)!} + \dots$ Which of the following is an expression for f(x)?
 - (A) $-3x \sin(x) + 3x^2$
 - $(B) \cos(x) + x^2$
 - $(C) \cos(x^2) + 1$
 - (D) $x^2e^x x^3 x^2$
 - (E) $e^{x^2} x^2 1$
- 9. What is the sum of the series $1 + \ln 2 + \frac{(\ln 2)^2}{2!} + \dots + \frac{(\ln 2)^n}{n!} + \dots$?
 - (A) ln 2
 - (B) $\ln(1 + \ln 2)$
 - (C)2
 - $(D)e^2$
 - (E) The series diverges.

Part 2: Short Response

10. The Taylor series about x = 5 for a certain function f converging to f(x) for all x in the interval of convergence. The nth derivative of f at x = 5 is given by $f^{(n)}(5) = \frac{(-1)^n n!}{2^n (n+2)}$ and $f(5) = \frac{1}{2}$ Use the LaGrange error to show that the fourth-degree Taylor Polynomial for f about x = 5 approximates f(6) with an error less than $\frac{1}{200}$.

$$R_4 = \left| \frac{f^5(z)}{5!} (x - c)^5 \right| = \left| \frac{5!}{2^5(7)5!} \right| = \frac{1}{224} < \frac{1}{200}$$

Part 3: Free Response Questions

- 11. The function g is continuous for all real numbers x and is defined by $g(x) = \frac{\cos(2x)-1}{x^2}$ for $x \neq 0$
 - (A) Let f be the function given by $f(x) = \cos(2x)$. Write the first four nonzero terms and the general term of the Taylor series for f about x = 0.

$$1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \frac{(2x)^6}{6!} + \dots + \frac{(-1)^n (2x)^{2n}}{(2n)!} + \dots$$

(B) Use your answer from part (b) to write the first three nonzero terms and the general term of the Taylor series for g about x = 0.

$$-\frac{2^{2}}{2!}+\frac{2^{4}x^{2}}{4!}-\frac{2^{6}x^{4}}{6!}+\cdots+\frac{(-1)^{n}2^{2n}x^{2n-2}}{(2n)!}+\cdots$$

(C) Determine whether g has a relative maximum, relative minimum, or neither at x = 0. Justify your answer.

$$g'(0) = 0$$
 and $g''(0) = \frac{4}{3} > 0$, therefore $g(x)$ has a relative minimum at $x = 0$

- 12. The Maclaurin series for e^x is $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + \dots$. The continuous function f is defined by $f(x) = \frac{e^{(x-1)^2} 1}{(x-1)^2}$ for $x \ne 1$ and f(1) = 1. The function f has derivatives of all orders at x = 1.
 - (A) Write the first four nonzero terms and the general term of the Taylor series for $e^{(x-1)^2}$ about x = 1.

$$1 + (x-1)^2 + \frac{(x-1)^4}{2!} + \frac{(x-1)^6}{3!} + \dots + \frac{(x-1)^{2n}}{n!} + \dots$$

(B) Use the Taylor series found in part (a) to write the first four nonzero terms of the general term of the Taylor series for f about x = 1.

$$1 + \frac{(x-1)^2}{2!} + \frac{(x-1)^4}{4!} + \frac{(x-1)^6}{6!} + \dots + \frac{(x-1)^{2n-2}}{n!} \ or \ \frac{(x-1)^{2n}}{(n+1)!}$$

(C) Use the ratio test to find the interval of convergence for the Taylor series found in part (b).

$$IOC(-\infty,\infty)$$

- 13. The Maclaurin series for $\ln(\frac{1}{1-x})$ is $\sum_{n=1}^{\infty} \frac{x^n}{n}$ with interval of convergence $-1 \le x < 1$.
- (A) Find the Maclaurin series for $\ln(\frac{1}{1+3x})$ and determine the interval of convergence.

$$\sum_{n=1}^{\infty} \frac{(-3x)^n}{n} \qquad IOC \ (-\frac{1}{3}, \frac{1}{3}]$$

(B) Find the value $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$