AP Calculus BC

Power and Taylor Series Practice Problems

Part 1: Multiple Choice

1. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(x+\frac{3}{2}\right)^{n}$ converges?
(A) $-\frac{5}{2}<x<-\frac{1}{2}$
(B) $-\frac{5}{2}<x \leq-\frac{1}{2}$
(C) $-\frac{5}{2} \leq x<-\frac{1}{2}$
(D) $-\frac{1}{2}<x<\frac{1}{2}$
(E) $x<-\frac{1}{2}$
2. Which of the following is the Maclaurin series for $\frac{1}{(1-x)^{2}}$?
(A) $1-x+x^{2}-x^{3}+\cdots$
(B) $1-2 x+3 x^{2}-4 x^{3}+\cdots$
(C) $1+2 x+3 x^{2}+4 x^{3}+\cdots$
(D) $1+x^{2}+x^{4}+x^{6}+\cdots$
(E) $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots$
3. Let $P(x)=3-3 x^{2}+6 x^{4}$ be the fourth-degree Taylor polynomial for the function f about $x=0$. What is the value of $f^{(4)}(0)$?
(A) 0
(B) $\frac{1}{4}$
(C) 6
(D) 24
(E) 144
4. What is the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n \cdot 2^{n}}$?
(A) $1<x<5$
(B) $1 \leq x<5$
(C) $1 \leq x \leq 5$
(D) $2<x<4$
(E) $2 \leq x \leq 4$
5. What is the coefficient of x^{2} in the Taylor series for $\sin ^{2} x$ about $=0$?
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2
6. The coefficient of $\left(x-\frac{\pi}{4}\right)^{3}$ in the Taylor series about $\frac{\pi}{4}$ of $f(x)=\cos x$ is
(A) $\frac{\sqrt{3}}{12}$
(B) $-\frac{1}{12}$
(C) $\frac{1}{12}$
(D) $\frac{1}{6 \sqrt{2}}$
(E) $-\frac{1}{3 \sqrt{2}}$
7. The nth derivative of a function f at $\mathrm{x}=0$ is given by $f^{(n)}(0)=(-1)^{n+1} \frac{n+2}{3^{n}(n+1)}$ for all $\mathrm{n} \geq 0$. Which of the following is the Maclaurin series of f ?
(A) $2-\frac{x}{2}+\frac{4 x^{2}}{27}-\frac{5 x^{3}}{1088}+\cdots$
(B) $-2+\frac{x}{2}-\frac{4 x^{2}}{27}+\frac{5 x^{3}}{108}+\cdots$
(C) $2+\frac{x}{2}-\frac{2 x^{2}}{27}+\frac{5 x^{3}}{648}+\cdots$
(D) $-2+\frac{3 x}{2}-\frac{2 x^{2}}{27}+\frac{5 x^{3}}{648}+\ldots$
(E) $-2+\frac{x}{2}-\frac{2 x^{2}}{27}+\frac{5 x^{3}}{648}+\cdots$
8. A function f has Maclaurin series given by $\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\frac{x^{6}}{4!}+\cdots+\frac{x^{n+3}}{(n+1)!}+\cdots$

Which of the following is an expression for $f(x)$?
(A) $-3 x \sin (x)+3 x^{2}$
(B) $-\cos (x)+x^{2}$
(C) $-\cos \left(x^{2}\right)+1$
(D) $x^{2} e^{x}-x^{3}-x^{2}$
(E) $e^{x^{2}}-x^{2}-1$
9. What is the sum of the series $1+\ln 2+\frac{(\ln 2)^{2}}{2!}+\cdots+\frac{(\ln 2)^{n}}{n!}+\cdots$?
(A) $\ln 2$
(B) $\ln (1+\ln 2)$
(C) 2
(D) e^{2}
(E) The series diverges.

Part 2: Short Response

10. The Taylor series about $x=5$ for a certain function f converging to $f(x)$ for all x in the interval of convergence. The nth derivative of f at $x=5$ is given by $f^{(n)}(5)=\frac{(-1)^{n} n!}{2^{n}(n+2)}$ and $f(5)=\frac{1}{2}$
Use the LaGrange error to show that the fourth-degree Taylor Polynomial for f about $x=5$ approximates $f(6)$ with an error less than $\frac{1}{200}$.

$$
R_{4}=\left|\frac{f^{5}(z)}{5!}(x-c)^{5}\right|=\left|\frac{5!}{2^{5}(7) 5!}\right|=\frac{1}{224}<\frac{1}{200}
$$

Part 3: Free Response Questions

11. The function g is continuous for all real numbers x and is defined by $g(x)=\frac{\cos (2 x)-1}{x^{2}}$ for $x \neq 0$
(A) Let f be the function given by $f(x)=\cos (2 x)$. Write the first four nonzero terms and the general term of the Taylor series for f about $x=0$.

$$
1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\frac{(2 x)^{6}}{6!}+\cdots+\frac{(-1)^{n}(2 x)^{2 n}}{(2 n)!}+\cdots
$$

(B) Use your answer from part (b) to write the first three nonzero terms and the general term of the Taylor series for g about $x=0$.

$$
-\frac{2^{2}}{2!}+\frac{2^{4} x^{2}}{4!}-\frac{2^{6} x^{4}}{6!}+\cdots+\frac{(-1)^{n} 2^{2 n} x^{2 n-2}}{(2 n)!}+\cdots
$$

(C) Determine whether g has a relative maximum, relative minimum, or neither at $x=0$. Justify your answer.
$g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=\frac{4}{3}>0$, therefore $g(x)$ has a relative minimum at $x=0$
12. The Maclaurin series for e^{x} is $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots+\frac{x^{n}}{n!}+\cdots$. The continuous function f is defined by $f(x)=\frac{e^{(x-1)^{2}}-1}{(x-1)^{2}}$ for $x \neq 1$ and $f(1)=1$. The function f has derivatives of all orders at $x=1$.
(A) Write the first four nonzero terms and the general term of the Taylor series for $e^{(x-1)^{2}}$ about $\mathrm{x}=1$.

$$
1+(x-1)^{2}+\frac{(x-1)^{4}}{2!}+\frac{(x-1)^{6}}{3!}+\cdots+\frac{(x-1)^{2 n}}{n!}+\cdots
$$

(B) Use the Taylor series found in part (a) to write the first four nonzero terms of the general term of the Taylor series for f about $\mathrm{x}=1$.

$$
1+\frac{(x-1)^{2}}{2!}+\frac{(x-1)^{4}}{4!}+\frac{(x-1)^{6}}{6!}+\cdots+\frac{(x-1)^{2 n-2}}{n!} \text { or } \frac{(x-1)^{2 n}}{(n+1)!}
$$

(C) Use the ratio test to find the interval of convergence for the Taylor series found in part (b).

$$
\operatorname{IOC}(-\infty, \infty)
$$

13. The Maclaurin series for $\ln \left(\frac{1}{1-x}\right)$ is $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ with interval of convergence $-1 \leq x<1$.
(A) Find the Maclaurin series for $\ln \left(\frac{1}{1+3 x}\right)$ and determine the interval of convergence.

$$
\sum_{n=1}^{\infty} \frac{(-3 x)^{n}}{n} \quad \text { IOC }\left(-\frac{1}{3}, \frac{1}{3}\right]
$$

(B) Find the value $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$

$$
\ln \frac{1}{2}
$$

