<u>AP Calculus BC</u> <u>Midterm Review – Advanced Integration</u>

11.
$$\int_{1}^{\infty} \frac{x}{(1+x^{2})^{2}} dx$$
 is
(A) $-\frac{1}{2}$ (B) $-\frac{1}{4}$ (C) $\frac{1}{4}$
84. $\int x^{2} \sin x dx =$
(A) $-x^{2} \cos x - 2x \sin x - 2 \cos x + C$
(B) $-x^{2} \cos x + 2x \sin x - 2 \cos x + C$
(C) $-x^{2} \cos x + 2x \sin x + 2 \cos x + C$
(D) $-\frac{x^{3}}{3} \cos x + C$
(E) $2x \cos x + C$

4.
$$\int \frac{1}{x^2 - 6x + 8} dx =$$
(A)
$$\frac{1}{2} \ln \left| \frac{x - 4}{x - 2} \right| + C$$
(B)
$$\frac{1}{2} \ln \left| \frac{x - 2}{x - 4} \right| + C$$
(C)
$$\frac{1}{2} \ln \left| (x - 2)(x - 4) \right| + C$$
(D)
$$\frac{1}{2} \ln \left| (x - 4)(x + 2) \right| + C$$
(E)
$$\ln \left| (x - 2)(x - 4) \right| + C$$

(D)
$$\frac{1}{2}$$
 (E) divergent
86. $\int \frac{dx}{(x-1)(x+3)} =$
(A) $\frac{1}{4} \ln \left| \frac{x-1}{x+3} \right| + C$
(B) $\frac{1}{4} \ln \left| \frac{x+3}{x-1} \right| + C$
(C) $\frac{1}{2} \ln \left| (x-1)(x+3) \right| + C$
(D) $\frac{1}{2} \ln \left| \frac{2x+2}{(x-1)(x+3)} \right| + C$
(E) $\ln \left| (x-1)(x+3) \right| + C$

15.
$$\int x \cos x \, dx =$$

- (A) $x \sin x \cos x + C$
- (B) $x\sin x + \cos x + C$
- (C) $-x\sin x + \cos x + C$
- (D) $x \sin x + C$

$$(E) \quad \frac{1}{2}x^2\sin x + C$$

25. $\int_0^\infty x^2 e^{-x^3} dx$ is

(A)
$$-\frac{1}{3}$$
 (B) 0 (C) $\frac{1}{3}$ (D) 1 (E) divergent

26. The population P(t) of a species satisfies the logistic differential equation $\frac{dP}{dt} = P\left(2 - \frac{P}{5000}\right)$, where the initial population P(0) = 3,000 and t is the time in years. What is $\lim_{t \to \infty} P(t)$?

(A) 2,500 (B) 3,000 (C) 4,200 (D) 5,000 (E) 10,000

28.
$$\lim_{x \to 1} \frac{\int_{1}^{x} e^{t^{2}} dt}{x^{2} - 1}$$
 is
(A) 0 (B) 1 (C) $\frac{e}{2}$ (D) e (E) nonexistent

Short Answer:

1.
$$\int_0^{\pi/2} \tan \theta \, d\theta$$

2. The populator of P(t) of a species satisfies the logistic differential equation $\frac{dP}{dt} = P\left(2 - \frac{P}{5000}\right)$, where the initial population is P(0) = 3000 and *t* is the time in years. What is $\lim_{t \to \infty} P(t)$?

$$3. \int_{-1}^{\infty} \frac{1}{x^2 + 5x + 6} dx$$

4. The function *N* satisfies the logistic differential equation $\frac{dN}{dt} = \frac{N}{10} (1 - \frac{N}{850})$, where N(0)=105. Which of the following statements is false?

(A)
$$\lim_{t \to \infty} N(t) = 850$$

(B) $\frac{dN}{dt}$ has a maximum value when $N = 105$
(C) $\frac{d^2N}{dt^2} = 0$ when $N = 425$.
(D) When $N > 425$, $\frac{dN}{dt} > 0$ and $\frac{d^2N}{dt^2} < 0$.