Station1: Accumulation Graph

Let f be a function defined on the closed interval $[-3,4]$ with $f(0)=3$. The graph of f^{\prime}, the derivative of f, consists of one-line segment and a semicircle, as shown.

1. On what intervals, if any is f increasing? Justify.

2. Find $f(-3)$.
3. Find the equation of the tangent line to the function f at the point $(0,-3)$

The graph of the continuous function f, consisting of three line segments and a semicircle is shown below. Let g be the function given by $g(x)=\int_{-2}^{x} f(t) d t$
4. Find $g(-6)$ and $g(0)$.
5. Find all the values of x on the open interval $(-6,3)$ for which the graph of g has a horizontal tangent. Determine whether g has a local max, local min, or neither at each of these values. Justify.

Graph of f

Station 2: Integration

1. $\int(x-2) \sqrt{x+3} d x$
2. $\int \frac{5 d x}{x \ln x}$
3. $\int\left(x^{\frac{1}{3}}+x \sqrt{x}-2\right) d x$
4. $\int\left(e^{-x}+\sec ^{2}\left(\frac{x}{3}\right)\right) d x$

Station 3: More Integration

1. $\int_{2}^{-4}|2+x| d x$
2. $\int_{0}^{1 / 2}\left[e^{y}+2 \cos (\pi y)\right] d y=$
3. Find the particular solution that satisfies the differential equations and the initial conditions.

$$
f^{\prime \prime}(x)=\frac{2}{x^{2}}, f^{\prime}(1)=1, f(1)=1, x>0
$$

4. $\int_{0}^{3} \frac{2 e^{2 x}}{1+e^{2 x}} d x$

Station 4: Average Value and FTOC (2)

1. $\frac{d}{d x}\left(\int_{\cos \left(x^{2}\right)}^{2 x} x^{2} d x\right)=$
2. Given $F(x)=\int_{0}^{e^{2 x}} \ln (t+1) d t$, find $F^{\prime}(x)$.
3. The acceleration at time t of an object is given by $a(t)=4 \pi \cos t$. What is the average acceleration of the object over the interval $[0, \pi]$?
4. Find the number(s) c guaranteed by the Mean Value Theorem for Integrals for $\int_{0}^{2 \pi} \cos x d x$.

Station 5: Approximation

The diameter of a tunnel $h(x)$ measured in feet is given in different intervals on the table below, with $h^{\prime}(x)>0$.

X	5	8	11	13	15	17	19
$\mathrm{~h}(\mathrm{x})$	5	6	8	10	11	13	16

1. Use trapezoids to estimate $\int_{5}^{19} h(x) d x$.
2. Use MRAM to estimate $\int_{5}^{19} h(x) d x$.
3. Find the average diameter of the tunnel using your answers from question \#1. Include unit of measure.
4. If you use RRAM, would it be more than or less than the value of $\int_{5}^{19} h(x) d x$. Justify your answer.
