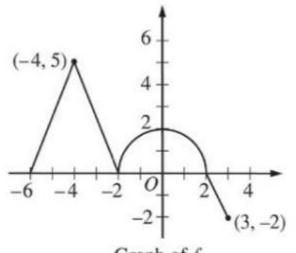

Station1: Accumulation Graph

Let f be a function defined on the closed interval [-3,4] with f(0) = 3. The graph of f', the derivative of f, consists of one-line segment and a semicircle, as shown.


1. On what intervals, if any is f increasing? Justify.

- 2. Find f(-3).
- 3. Find the equation of the tangent line to the function f at the point (0, -3)

The graph of the continuous function f, consisting of three line segments and a semicircle is shown below. Let g be the function given by $g(x) = \int_{-2}^{x} f(t) dt$

- 4. Find g(-6) and g(0).
- 5. Find all the values of x on the open interval (-6, 3) for which the graph of g has a horizontal tangent. Determine whether g has a local max, local min, or neither at each of these values. Justify.

Graph of f

Station 2: Integration

1.
$$\int (x-2)\sqrt{x+3} dx$$

2.
$$\int \frac{5dx}{x \ln x}$$

3.
$$\int \left(x^{\frac{1}{3}} + x\sqrt{x} - 2\right) dx$$

4.
$$\int (e^{-x} + \sec^2(\frac{x}{3})) dx$$

Station 3: More Integration

1. $\int_{2}^{-4} |2 + x| dx$ 2. $\int_{0}^{1/2} [e^{y} + 2\cos(\pi y)] dy =$

3. Find the particular solution that satisfies the differential equations and the initial conditions.

$$f''(x) = \frac{2}{x^2}, f'(1) = 1, f(1) = 1, x > 0$$

 $4. \int_0^3 \frac{2e^{2x}}{1+e^{2x}} dx$

$$1. \frac{d}{dx} \left(\int_{\cos(x^2)}^{2x} x^2 dx \right) =$$

2. Given
$$F(x) = \int_0^{e^{2x}} \ln(t+1) dt$$
, find $F'(x)$.

3. The acceleration at time t of an object is given by $a(t) = 4\pi \cos t$. What is the average acceleration of the object over the interval $[0,\pi]$?

4. Find the number(s) c guaranteed by the Mean Value Theorem for Integrals for $\int_{0}^{2\pi} \cos x dx$.

Station 5: Approximation

The diameter of a tunnel h(x) measured in feet is given in different intervals on the table below, with h'(x) > 0.

Х	5	8	11	13	15	17	19
h(x)	5	6	8	10	11	13	16

- 1. Use trapezoids to estimate $\int_{5}^{19} h(x) dx$.
- 2. Use MRAM to estimate $\int_{5}^{19} h(x) dx$.
- 3. Find the average diameter of the tunnel using your answers from question #1. Include unit of measure.
- 4. If you use RRAM, would it be more than or less than the value of $\int_{5}^{19} h(x) dx$. Justify your answer.