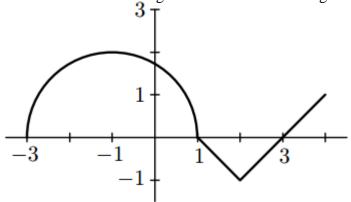
Name:

(1) $\int_0^1 x \sqrt{ax^2 + b} \, dx$, where *a* and *b* are constants.

For Questions 2-4, the graph of a function *f* consists of a semicircle and two line segments as shown to the right. Let $g(x) = \int_{1}^{x} f(t)dt$.

(2) Find g(3).

(3) Find g(-1).



(4) Write an equation for the line tangent to the graph of *g* at x = -1.

(5) The rate of water flow, in gallons per hour, can be modeled by $R(t) = \frac{1}{2} \left(10 + 6t - \frac{1}{4}t^2 \right)$. Find the average water flow over the first 6 hours. Indicate units of measure.

(6) Using the substitution $u = \sqrt{x}$, $\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$ is equal to which of the following?

(A) $2\int_1^{16}e^u du$	(B) $2\int_1^4 e^u du$	(C) $2\int_1^2 e^u du$
$(D)\frac{1}{2}\int_{1}^{2}e^{u}du$	(E) $\int_1^4 e^u du$	

 $(7)\,\frac{d}{dx}\Big(\int_{x^4}^{\sin 2x}\sqrt{x}dx\Big)=$

(8) The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t. The table below shows the rate as measured every 3 hours for a 24-hour period.

t (hours)	0	3	6	9	12	15	18	21	24
R(t) (gal/hr)	2	3	5	6	6	8	10	11	14

Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate the value of $\int_0^{24} R(t) dt$. Using correct units, explain the meaning of your answer in terms of water flow. (9) $\int_{\pi/6}^{\pi/2} \cot x \, dx =$ (A) $\ln \frac{1}{2}$ (B) $\frac{1}{2}$ (C) $-\ln \frac{1}{2}$ (D) $\ln(\sqrt{3} - 1)$ (E) None of these

(10) If f'(x) is positive and f''(x) is negative, which approximation is an underestimation?

- I. Left RAM
- II. Right RAM
- III. Trapezoidal Rule

I only	B. II only	C.	III. only	D. I and III	E. II and III		
	~						
$(11) \int_0^1 \frac{e^x}{(3-e^x)^2} dx =$							
			(\mathbf{c}) 1	(D) <i>e</i> -1	(D) e-2		
(/	A) $3 \ln e - 3 $	(B) 1	$(C)\frac{1}{3-e}$	(D) $\frac{e-1}{2(3-e)}$	(E) $\frac{e-2}{3-e}$		

(12) The acceleration of a particle moving along a straight line is given by a = 6t. If, when t = 0 its velocity is v = 1 and its distance s = 3, then determine the position function for any time t.

$$(13) \int \frac{2y+3}{\sqrt{y-5}} dy =$$

(14) If $\int_{a}^{b} f(x)dx = 3$ and $\int_{a}^{b} g(x)dx = -2$, then which of the following must be true?

I.
$$f(x) > g(x)$$
 for all $a \le x \le b$
II. $\int_a^b [f(x) + g(x)] dx = 1$
III. $\int_a^b [f(x)g(x)] dx = -6$

(A) I only (B) II only (C) III only (D) II and III only (E) I, II, and III

 $(15) \int_{-2}^{3} |x+1| dx =$