Name:
Taylor and Power Series FRQ
AP Calculus BC

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =1 \\
f^{(n+1)}(0) & =-n \cdot f^{(n)}(0) \text { for all } n \geq 1
\end{aligned}
$$

A function f has derivatives of all orders for $-1<x<1$. The derivatives of f satisfy the conditions above. The Maclaurin series for f converges to $f(x)$ for $|x|<1$.
(a) Show that the first four nonzero terms of the Maclaurin series for f are $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$, and write the general term of the Maclaurin series for f.
(b) Determine whether the Maclaurin series described in part (a) converges absolutely, converges conditionally, or diverges at $x=1$. Explain your reasoning.
(c) Write the first four nonzero terms and the general term of the Maclaurin series for $g(x)=\int_{0}^{x} f(t) d t$.
(d) Let $P_{n}\left(\frac{1}{2}\right)$ represent the n th-degree Taylor polynomial for g about $x=0$ evaluated at $x=\frac{1}{2}$, where g is the function defined in part (c). Use the alternating series error bound to show that $\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|<\frac{1}{500}$.

The function f has a Taylor series about $x=1$ that converges to $f(x)$ for all x in the interval of convergence.
It is known that $f(1)=1, f^{\prime}(1)=-\frac{1}{2}$, and the nth derivative of f at $x=1$ is given by $f^{(n)}(1)=(-1)^{n} \frac{(n-1)!}{2^{n}}$ for $n \geq 2$.
(a) Write the first four nonzero terms and the general term of the Taylor series for f about $x=1$.
(b) The Taylor series for f about $x=1$ has a radius of convergence of 2 . Find the interval of convergence. Show the work that leads to your answer.
(c) The Taylor series for f about $x=1$ can be used to represent $f(1.2)$ as an alternating series. Use the first three nonzero terms of the alternating series to approximate $f(1.2)$.
(d) Show that the approximation found in part (c) is within 0.001 of the exact value of $f(1.2)$.

The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=x-\frac{3}{2} x^{2}+3 x^{3}-\cdots+\frac{(-3)^{n-1}}{n} x^{n}+\cdots$ and converges to $f(x)$ for $|x|<R$, where R is the radius of convergence of the Maclaurin series.
(a) Use the ratio test to find R.
(b) Write the first four nonzero terms of the Maclaurin series for f^{\prime}, the derivative of f. Express f^{\prime} as a rational function for $|x|<R$.
(c) Write the first four nonzero terms of the Maclaurin series for e^{x}. Use the Maclaurin series for e^{x} to write the third-degree Taylor polynomial for $g(x)=e^{x} f(x)$ about $x=0$.

CALCULATOR INACTIVE

If $\sum_{n=0}^{\infty} a_{n} x^{n}$ is a Taylor series that converges to $f(x)$ for all real x, then $f^{\prime}(1)=$
(A) 0
(B) a_{1}
(C) $\sum_{n=0}^{\infty} a_{n}$
(D) $\sum_{n=1}^{\infty} n a_{n}$
(E) $\sum_{n=1}^{\infty} n a_{n}^{n-1}$

CALCULATOR ACTIVE

What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{\sqrt{n}}$ converges?
(A) $-3<x<-1$
(B) $-3 \leq x<-1$
(C) $-3 \leq x \leq-1$
(D) $-1 \leq x<1$
(E) $-1 \leq x \leq 1$

The Taylor series for $\ln x$, centered at $x=1$, is $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(x-1)^{n}}{n}$. Let f be the function given by the sum of the first three nonzero terms of this series. The maximum value of $|\ln x-f(x)|$ for $0.3 \leq x \leq 1.7$ is
(A) 0.030
(B) 0.039
(C)
0.145
(D) 0.153
(E) 0.529

The graph of the function represented by the Maclaurin series
$1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots+\frac{(-1)^{n} x^{n}}{n!}+\ldots$ intersects the graph of $y=x^{3}$ at $x=$
(A) 0.773
(B) 0.865
(C) 0.929
(D) 1.000
(E) 1.857

