STATION ONE - LIMITS \& CONTINUITY

1. The function $G(x)=\left\{\begin{array}{c}x^{2} \quad x>2 \\ 4-2 x \quad x<2\end{array}\right.$ is not continuous at $\mathrm{x}=2$ because
A) G(2) does not exist
B) $\lim _{x \rightarrow 2} G(x)$ does not exis \dagger
C) $\lim _{x \rightarrow 2} G(x)=G(2)$
D) All three statements A, B, and C
E) None of the above
2. Find the value of a and b that would make $f(x)$ continuous for all real numbers.

$$
f(x)=\left\{\begin{array}{c}
2, \quad \text { for } x \leq-1 \\
a x+b, \text { for }-1<x<3 \\
-2, \text { for } x \geq 3
\end{array}\right.
$$

3. Find the limit: $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$
4. Find the limit: $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+4}}{x^{2}}$

STATION TWO: DERIVIATIVES OF TABLES

Suppose that the functions f and g and their first derivatives have the following values at $x=-1$ and $x=0$.

X	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
-1	0	-1	2	1
0	-1	-3	-2	4

Evaluate the first derivatives of the following combinations of f and g at the given value of x.

1. $3 f(x)-g(x) ; x=-1$
2. $f(g(x)) ; x=-1$
3. $[f(x)]^{2}[g(x)]^{3} ; x=0$
4. $\frac{f(x)}{g(x)+2} ; x=0$
5. $g(x+f(x)) ; x=0$

STATION THREE: TANGENT LINES

1. Find the equation of the normal line to the curve $y=\frac{5}{(5-2 x)^{2}}$ at $x=0$.
2. Find all the x values on the graph of $f(x)=x^{4}-6 x^{2}+4$, where the tangent line is horizontal.
3. Find the equation of the tangent line to the curve $y=\sqrt{3 x-1}$ that is perpendicular to the line $3 y+2 x=3$.
4. Find the slope of graph $y=\frac{8}{\left(x^{2}+4\right)}$ at the point $(2,1)$.

STATION FOUR: DERIVATIVES

1. Find the derivative of $y=t^{2} \sin \left(t^{2}\right)$
2. Find the derivative of $y=-4 \csc ^{3}(1-x)$
3. Find the second derivative of $y=\frac{3}{x^{2}-12}$
4. Find $\frac{d y}{d x}$ of $y=\left(\frac{3 x-1}{x^{2}+3}\right)^{2}$
5. $\frac{d}{d x}\left[\frac{t^{2}}{\sqrt{t^{3}+1}}\right]=$

STATION FIVE: ALL MIXED UP

1. Prove that the polynomial $f(x)=x^{3}+2 x-1$ has a zero in the interval $[0,1]$.
2. A particle's position is given by $x(t)=\tan t-\sin t$. At time $t=\frac{5 \pi}{6}$, determine if the particle is speeding up or slowing down. Justify your answer.
3. If the position of a particle along a horizontal line is given by

$$
x(t)=\frac{1}{3} t^{3}-t^{2}-3 t+4
$$

(a) Find the average rate of change on the interval $[0,6]$.
(b) Find the instantaneous rate of change of the particle at $t=3$.
4. Using the definition of a derivative, find the derivative of $f(x)=\sqrt{2 x}-4$

STATION SIX - MULTIPLE CHOICE PRACTICE

1. The function $G(x)=\left\{\begin{array}{ll}x-3 & x>2 \\ -5 & x=2 \\ 3 x-7 & x<2\end{array}\right.$ is not continuous at $x=2$ because
A) $G(2)$ is not defined
B) $\lim _{x \rightarrow 2} G(x)$ does not exist
C) $\lim _{x \rightarrow 2} G(x) \neq G(2)$
D) $G(2) \neq-5$
E) All of the above
2. Let $F(x)=\left\{\begin{array}{ll}\frac{x^{2}+x}{x} & x \neq 0 \\ 1 & x=0 .\end{array}\right.$ Which of the following statements are true of F ?
I. F is defined at $x=0$.
II. $\lim _{x \rightarrow 0} F(x)$ exists.
III. $\stackrel{Y-}{F}$ is continuous at $x=0$.
A) I only
B) II only
C) I, II only
D) II, III only
E) I, II, and III
3. The function

$$
f(x)= \begin{cases}4-x^{2} & x \leq 1 \\ m x+b & x>1\end{cases}
$$

is continuous and differentiable for all real numbers. What must be the values of m and b ?
A) $m=2, b=1$
B) $m=2, b=5$
C) $m=-2, b=1$
D) $m=-2, b=5$
E) None of these
4. In the $x y$-plane, the line $x+y=k$, where k is a constant, is tangent to the graph of $y=x^{2}+3 x+1$. What is the value of k ?
(A) -3
(B) -2
(C) -1
(D) 0
(E) 1
5.

$$
\lim _{h \rightarrow 0} \frac{6 \cos \left(\frac{\pi}{6}+h\right)-6 \cos \frac{\pi}{6}}{h}=\begin{array}{llll}
\text { (A) } 0 & \text { (B) }-6 & \text { (C) } 6 & \text { (D) }-3 \tag{B}
\end{array}
$$

