Name: Answers
(1) The rate at which a rumor spreads through a high school can be modeled by the differential equation $\frac{d P}{d t}=0.003 P(2000-P)$, where P is the number of students who have heard the rumor t hours after 9AM.
(a) How many students have heard the rumor when it is spreading the fastest $\mathbf{1 0 0 0}$
(b) If $P(0)=5$, solve for P as a function of $t . \quad P(t)=\frac{2000}{1+399 e^{-6 t}}$
(2) $\int \frac{6 x^{2}-x-1}{3 x-1} d x=x^{2}+\frac{x}{3}-\frac{2}{9} \ln |3 x-1|+C$
(3) $\int e^{3 x} \sin x d x=\frac{1}{10}\left(3 e^{3 x} \sin x-e^{3 x} \cos x\right)+C$
(4) $\lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{x}=e^{4}$
(5) $\lim _{x \rightarrow \frac{\pi}{2}}(\sec x-\tan x)=0$
(6) $\int\left(x^{2}-5 x\right) e^{x} d x=e^{x}\left(x^{2}-7 x+7\right)+C$
(7) $\int_{0}^{\pi / 2} \tan \theta d \theta$ Diverges
(8) The populator of $P(t)$ of a species satisfies the logistic differential equation $\frac{d P}{d t}=P\left(2-\frac{P}{5000}\right)$, where the initial population is $P(0)=3000$ and t is the time in years. What is $\lim _{t \rightarrow \infty} P(t)$?
(A) 2500
(B) 3000
(C) 4200
(D) 5000
(E) $\mathbf{1 0 , 0 0 0}$
(9) Which of the following startements about the integral $\int_{0}^{\pi} \sec ^{2} x d x$ is true?
(A) The integral is equal to 0
(B) The integral is equal to $\frac{2}{3}$
(C) The integral diverges because $\lim _{x \rightarrow \frac{\pi-}{2}} \sec ^{2} x$ does not exist.
(D) The integral diverges because $\lim _{x \rightarrow \frac{\pi-}{2}} \tan x$ does not exist
(10) $\int_{-1}^{1} \frac{e^{x}}{e^{x}-1} d x$ Diverges
(11) $\int_{e}^{\infty} \frac{1}{x(\ln x)^{2}} d x=1$
(12) If $\int f(x) \sin x d x=-f(x) \cos x+\int 3 x^{2} \cos x d x$, then $f(x)$ could be
(A) $3 x^{2}$
(B) x^{3}
(C) $-x^{3}$
(D) $\sin x$
(E) $\cos x$
(13) The function N satisfies the logistic differential equation $\frac{d N}{d t}=\frac{N}{10}\left(1-\frac{N}{850}\right)$, where $N(0)=105$. Which of the following statements is false?
(A) $\lim _{t \rightarrow \infty} N(t)=850$
(B) $\frac{d N}{d t}$ has a maximum value when $N=105$
(C) $\frac{d^{2} N}{d t^{2}}=0$ when $N=425$.
(D) When $N>425, \frac{d N}{d t}>0$ and $\frac{d^{2} N}{d t^{2}}<0$.
(14) Find the value of the area under the curve of $y=\frac{1}{x^{2}+1}$ in the first quadrant? $\quad A=\frac{\pi}{2}$
(15) $\int_{-1}^{\infty} \frac{1}{x^{2}+5 x+6} d x=\ln 2$
(16) $\int x^{2} \ln x d x=\frac{x^{3} \ln x}{3}-\frac{1}{9} x^{3}+C$
(17) Let R be the region between the graph of $y=e^{-2 x}$ and the x-axis for $x \geq 3$. The area of R is
(A) $\frac{1}{2 e^{6}}$
(B) $\frac{1}{e^{6}}$
(C) $\frac{2}{e^{6}}$
(D) $\frac{\pi}{2 e^{6}}$
(E) infinite
(18) $\int_{0}^{1} \frac{5 x+8}{x^{2}+3 x+2} d x$ is
(A) $\ln (8)$
(B) $\ln \left(\frac{27}{2}\right)$
(C) $\ln (18)$
(D) $\ln (288)$
(E) divergent
(19) $\lim _{x \rightarrow 0^{+}}(\sin x)^{x}=1$

(20) Which of the following differential equations for a population P could model the logistic growth shown in the figure above?
(A) $\frac{d P}{d t}=0.2 P-0.001 P^{2}$
(B) $\frac{d P}{d t}=0.1 P-0.001 P^{2}$
(C) $\frac{d P}{d t}=0.2 P^{2}-0.001 P$
(D) $\frac{d P}{d t}=0.1 P^{2}-0.001 P$
(E) $\frac{d P}{d t}=0.1 P^{2}+0.001 P$

