Name:

(1) The rate at which a rumor spreads through a high school can be modeled by the differential equation $\frac{dP}{dt} = 0.003P(2000 - P)$, where *P* is the number of students who have heard the rumor *t* hours after 9AM.

(a) How many students have heard the rumor when it is spreading the fastest

(b) If P(0) = 5, solve for P as a function of t.

(2) $\int \frac{6x^2 - x - 1}{3x - 1} dx$

(3) $\int e^{3x} \sin x \, dx$

 $(4) \lim_{x \to \infty} \left(1 + \frac{4}{x} \right)^x$

 $(5) \lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$

(6) $\int (x^2 - 5x) e^x dx$

 $(7)\int_0^{\pi/2}\tan\theta\,d\theta$

(8) The populator of P(t) of a species satisfies the logistic differential equation $\frac{dP}{dt} = P\left(2 - \frac{P}{5000}\right)$, where the initial population is P(0) = 3000 and t is the time in years. What is $\lim_{t \to \infty} P(t)$? (A) 2500 (B) 3000 (C) 4200 (D) 5000 (E) 10,000

(9) Which of the following startements about the integral $\int_0^{\pi} \sec^2 x dx$ is true?

(A) The integral is equal to 0 (B) The integral is equal to $\frac{2}{3}$ (C) The integral diverges because $\lim_{x \to \frac{\pi}{2}} \sec^2 x$ does not exist. (D) The integral diverges because $\lim_{x \to \frac{\pi}{2}} \tan x$ does not exist

$$(10) \int_{-1}^{1} \frac{e^x}{e^{x-1}} dx$$

$$(11) \int_e^\infty \frac{1}{x(\ln x)^2} dx$$

(12) If $\int f(x) \sin x \, dx = -f(x) \cos x + \int 3x^2 \cos x \, dx$, then f(x) could be

(A) $3x^2$ (B) x^3 (C) $-x^3$ (D) $\sin x$ (E) $\cos x$

(13) The function N satisfies the logistic differential equation $\frac{dN}{dt} = \frac{N}{10} \left(1 - \frac{N}{850}\right)$, where N(0) = 105. Which of the following statements is false?

(A)
$$\lim_{t \to \infty} N(t) = 850$$

(B) $\frac{dN}{dt}$ has a maximum value when $N = 105$
(C) $\frac{d^2N}{dt^2} = 0$ when $N = 425$.
(D) When $N > 425$, $\frac{dN}{dt} > 0$ and $\frac{d^2N}{dt^2} < 0$.

(14) Find the value of the area under the curve of $y = \frac{1}{x^2+1}$ in the first quadrant?

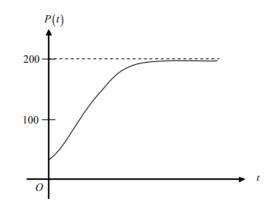
$$(15) \int_{-1}^{\infty} \frac{1}{x^2 + 5x + 6} dx$$

$$(16) \int x^2 \ln x \, dx$$

(17) Let *R* be the region between the graph of $y = e^{-2x}$ and the *x*-axis for $x \ge 3$. The area of *R* is

(A)
$$\frac{1}{2e^6}$$
 (B) $\frac{1}{e^6}$ (C) $\frac{2}{e^6}$ (D) $\frac{\pi}{2e^6}$ (E) infinite
(18) $\int_0^1 \frac{5x+8}{x^2+3x+2} dx$ is
(A) ln(8) (B) $\ln(\frac{27}{2})$ (C) ln(18) (D) ln(288) (E) divergent

(19) $\lim_{x \to 0^+} (\sin x)^x$



(20) Which of the following differential equations for a population P could model the logistic growth shown in the figure above?

(A)
$$\frac{dP}{dt} = 0.2P - 0.001P^2$$
 (B) $\frac{dP}{dt} = 0.1P - 0.001P^2$ (C) $\frac{dP}{dt} = 0.2P^2 - 0.001P$
(D) $\frac{dP}{dt} = 0.1P^2 - 0.001P$ (E) $\frac{dP}{dt} = 0.1P^2 + 0.001P$