AP CALCULUS

Area Approximation - Riemann Sums and Trapezoid Rule

1. If f(x) is a continuous function for all x, given selected values of f below, approximate $\int_{1}^{8} f(x) dx$ using the trapezoid method.

	x	0	1	3	6	6.6	8	10
f	$\dot{x}(x)$	4	3	3	1	5	8	10

2. The table below give the values of a function obtained from an experiment. Use them to estimate $\int_0^6 f(x) dx$ using three equal subintervals.

x	0	1	3	3	4	5	6
f(x)	9.3	9.0	8.3	6.5	2.3	-7.6	-10.5

A. Use left endpoint approximation.

- B. Use right endpoint approximation.
- C. If the function is said to be decreasing function, can you say whether your estimates from A and B are less than or greater than the exact value of the integral?

3. The graph of the function f over the interval [1,7] is shown. Using values from the graph, find the trapezoidal rule estimates for the integral $\int_{1}^{7} f(x) dx$ by using the indicated number of subintervals.

A. n = 3

B. n = 6

4. Find $\int_0^5 f(x) dx$ if $f(x) = \begin{cases} 3, x < 3 \\ x, x \ge 3 \end{cases}$. (Hint: Sketch the graph and interpret the areas)