1. If $f(x)$ is a continuous function for all x , given selected values of f below, approximate $\int_{1}^{8} f(x) d x$ using the trapezoid method.

x	0	1	3	6	6.6	8	10
$f(x)$	4	3	3	1	5	8	10

2. The table below give the values of a function obtained from an experiment. Use them to estimate $\int_{0}^{6} f(x) d x$ using three equal subintervals.

x	0	1	3	3	4	5	6
$f(x)$	9.3	9.0	8.3	6.5	2.3	-7.6	-10.5

A. Use left endpoint approximation.
B. Use right endpoint approximation.
C. If the function is said to be decreasing function, can you say whether your estimates from A and B are less than or greater than the exact value of the integral?
3. The graph of the function f over the interval $[1,7]$ is shown. Using values from the graph, find the trapezoidal rule estimates for the integral $\int_{1}^{7} f(x) d x$ by using the indicated number of subintervals.
A. $n=3$
B. $n=6$

4. Find $\int_{0}^{5} f(x) d x$ if $f(x)=\left\{\begin{array}{l}3, x<3 \\ x, x \geq 3\end{array}\right.$. (Hint: Sketch the graph and interpret the areas)

