Integration by Parts - Classwork

Suppose you wish to rotate about the y-axis the graph of $y=\cos x$

The volume, using the shell method is given by

$$
V=2 \pi \int_{0}^{\pi / 2} x \cdot \cos x d x
$$

We can obviously solve this using your calculator, which uses the techniques of numerical integration (trapezoids, Simpson's, etc.) But u-substitution for the Fundamental Theorem of Calculus doesn't work here, and to this point in your study of calculus, you were at a dead end. We will now learn techniques to solve such problems that were essential in the days "BC" (before calculators). These techniques are now interesting for historical reasons, but are important for this course.

Let us start by learning how to integrate a product of two functions. We know how to differentiate a product, but how about an integral? Let us start for the formula for the differential of a product. If $y=u \cdot v$ where u and v are differentiable functions of x, then

$$
\begin{array}{ll}
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x} & \text { If we multiply both sides by } d x \text {, we get } \\
d y=u \cdot d v+v \cdot d u & \text { If we integrate both sides of the equation, we get } \\
\int d y=\int u \cdot d v+\int v \cdot d u & \text { Let's move some terms around } \\
\int u \cdot d v=\int d y-\int v \cdot d u & \text { Since } \int d y=y \text { (ignoring the }+\mathrm{C} \text {), we get } \\
\int u \cdot d v=y-\int v \cdot d u & \text { But since, } y=u v \text { we get, finally } \\
\int u \cdot d v=u v-\int v \cdot d u & \text { This is the formula for what we call integration by parts }
\end{array}
$$

Technique: Integration by Parts

If u and v are differentiable functions of x, then

$$
\int u \cdot d v=u v-\int v \cdot d u
$$

Technique: Integration by Parts

If u and v are differentiable functions of x, then
$\int u \cdot d v=u v-\int v \cdot d u$

Example 1) Find $\int x \cdot \cos x d x$ To do this by integration by parts, set up a chart

$$
\begin{array}{ll}
u= & v= \\
d u= & d v=
\end{array}
$$

There are three pieces of information that must be placed into the u and $d v$ slots: $x, \cos x$, and $d x$ $d x$ will always go into the $d v$ slot. Let's put the x in the u slot, and $\cos x$ in the $d v$ slot. So we have.

$$
\begin{array}{ll}
\begin{array}{ll}
u=x & v=\sin x \\
d u=d x & d v=\cos x d x
\end{array} & \text { We can now complete the chart } \\
u=x & v=\sin x \\
d u=d x & d v=\cos x d x
\end{array} \begin{aligned}
& \text { The integration by parts } \\
& \text { formula works like this: }
\end{aligned} \quad \begin{aligned}
& u=x \longrightarrow v=\sin x \\
& d u=d x<d v=\cos x
\end{aligned} d x .
$$

$$
\int x \cdot \cos x d x=x \cdot \sin x-\int \sin x d x \quad \text { What we have done essentially is create another integral. }
$$ which hopefully we can take.

$=x \cdot \sin x+\cos x+C$
Let's check it out: take the derivative of $=x \cdot \sin x+\cos x+C$

Example 2) Find $\int x \cdot e^{x} d x$ and $\int_{0}^{1} x e^{x} d x$.
First, make sure that normal u-substitution does not work before you try "Parts".

$$
\begin{array}{ll}
u= & v= \\
d u= & d v=
\end{array}
$$

Example 3) Find $\int x^{2} \ln x d x$

$$
\begin{array}{ll}
u= & v= \\
d u= & d v= \\
\end{array}
$$

Example 4) Find $\int \ln x d x$

$$
\begin{array}{ll}
u=e^{x} & v= \\
d u= & d v=x d x
\end{array}
$$

When things go wrong: Integration by parts trades one integral for another. The bargain is worth making only if the second expression is easier to integrate than the original. For instance, in example 2 above, $\int x \cdot e^{x} d x$, suppose $\begin{array}{lll}\text { you set up your chart like this: } & u=e^{x} & v= \\ d u=\ldots & d v=x d x\end{array} \quad$ Complete the chart.

Now set up integration by parts. Does it help?

Our choices aren't wrong, they just don't help. This time we struck out.

Try taking $\int 2 x e^{x^{2}} d x$ by integration by parts. There are two possibilities. Try each.

$$
\begin{array}{llll}
u= & v= & u= & v= \\
d u= & d v= & d u= & d v= \\
\hline
\end{array}
$$

Ths conclusions is that integration by parts is the wrong tool for the job. This problem can be done by ordinary u-substitution. Try it.

When things go right: The trick is to choose u and v successfully. In practice, "successfully" means two things: $d v$ can be antidifferentiated to give u, and $\int v \cdot d u$ is simpler than $\int u \cdot d v$.

Example 5) Find $\int \arctan x d x$

$$
\begin{array}{ll}
u= & v= \\
d u= & d v=
\end{array}
$$

Repeated Integration by Parts: Sometimes, we can repeat the process of integration by parts to integrate a difficult expression.

Example 6) Find $\int x^{2} e^{x} d x \quad$ Set up your chart: $\quad \begin{array}{ll}u= & v= \\ d u= & d v=\end{array}$

So $\int x^{2} e^{x} d x=$ \qquad Did we get anywhere?

What is the final answer?

Example 7) Find $\int e^{x} \sin x d x$. u-substitution doesn't work. Try parts.

$$
\begin{array}{ll}
u= & v= \\
d u= & d v= \\
\hline
\end{array}
$$ So $\int e^{x} \sin x d x=\longrightarrow$ We still have a tough integral. Parts again. $\begin{array}{ll}u= & v=\square \\ d u= & d v=\square\end{array}$ So $\int e^{x} \sin x d x=$ \qquad . The original integral reappeared. Are we chasing our tails?

Example 8) Tougher one. $\int \sin ^{2} x d x$

Example 9) Tougher one. $\int x^{2} \cos 4 x \cdot d x$

Integration by Parts - Homework

1. $\int x \sin x d x$
2. $\int x \cos (5 x) d x$
3. $\int x e^{8 x} d x$
4. $\int 6 x e^{-3 x} d x$
5. $\int x \sec ^{2} x d x$
6. $\int \sqrt{x} \ln x d x$
7. $\int x \sqrt{1+x} d x$
8. $\int \sin ^{-1} x d x$
9. $\int(x+4) e^{2 x} d x$
10. $\int x^{3} \ln x d x$
11. $\int x^{3} e^{x} d x$
12. $\int x^{2} \cos x d x$
13. $\int_{1}^{e} 4 x \ln x d x$
14. $\int x^{2} \sin x d x$
15. $\int e^{x} \cos x d x$
16. Find the volume when $y=\ln x$ is rotated about the x-axis between $x=1$ and $x=e$.
