\qquad
Area, Volume and Arc-length Review Problems.
For full credit, show all work that leads to your answer. All answers should be expressed in their simplest form.

CALCULATOR INACTIVE

1. Let R be the region in the first quadrant bounded by the graph of $y=3 x-x^{2}$ and the x -axis. A solid is generated when R is revolved about the vertical line $x=-1$. Set up, but do not evaluate, the definite integral that gives the volume of this solid.
2. Let R be the region bounded by the x -axis, the graph of $x=y^{2}+2$, and the line $x=4$. Set up, but do not evaluate, the definite integral that gives the area of this region.
3. Let f and g be the functions given by $f(x)=e^{x}$ and $g(x)=\frac{1}{x}$. Which of the following gives the area of the region enclosed by the graphs of f and g between $\mathrm{x}=1$ and $\mathrm{x}=2$?
(A) $e^{2}-e-\ln 2$
(B) $\ln 2-e^{2}+e$
(C) $e^{2}-\frac{1}{2}$
(D) $e^{2}-e-\frac{1}{2}$
(E) $\frac{1}{e}-\ln 2$
4. Let R be the region in the first quadrant enclosed by the graphs of $y=2 x$ and $y=x^{2}$. A solid has the base of region R. For this solid, the cross-sections perpendicular to the $y=a x i s ~ a r e ~ s q u a r e s . ~ F i n d ~ t h e ~ v o l u m e ~ o f ~ t h i s ~ s o l i d . ~$
5. Let R be a region in the first quadrant under the graph of $y=\frac{1}{\sqrt{x}}$ for $4 \leq x \leq 9$. If the line $x=k$ divides the region R into two regions of equal area, what is the value of k ?

CALCULATOR ACTIVE

For full credit, show all work that leads to your answer. All answer must be given as a decimal approximation (no pi).

1. Let R be the region enclosed by the graphs of $y=\ln \left(x^{2}+1\right)$ and $y=\cos x$. The base of a solid is the region R . Each cross section of the solid perpendicular to the x -axis is an equilateral triangle. Find the volume of the solid.
2. Let R be the region in the xy -plane between the graphs of $y=e^{x}$ and $y=e^{-x}$ from $\mathrm{x}=0$ to $\mathrm{x}=2$.
a. Find the volume of the solid generated when R is revolved about the line $y=-3$
b. Using the same region in \#2, find the volume of the solid generated when R is revolved about the y-axis.
3. A region R is enclosed by the curves $x=y^{2}-2, \mathrm{y}=\ln \mathrm{x}$, and bounded above by $\mathrm{y}=1$. Find the area of R .
4. Find the length of the curve $y=\sqrt[3]{x}$ from $x=-2$ to $x=2$.
5. Let R be the region in the first quadrant enclosed by the graphs of $y=4 e^{-x}, y=\tan \left(\frac{x}{2}\right)$, the line $\mathrm{x}=\pi$, and the x -axis as shown in the figure below.
a. Find the area of region S.

b. Let R be the region in the first quadrant enclosed by the graphs of $y=4 e^{-x}, y=\tan \left(\frac{x}{2}\right)$, and the y-axis. The region R is the base of a solid, each cross-section perpendicular to the x -axis is a semicircle. Find the volume of this solid.
6. Let R be the region bounded by the graphs of $y=\sin (\pi x)$ and $y=x^{3}-4 x$ as shown below.
a. Find the volume of the solid generated by rotating this region about $\mathrm{y}=4$.

b. The horizontal line $\mathrm{y}=-2$ splits the region R into two parts. Write, but do not evaluate, and integral expression for the area of the part of R this is below this horizontal line.
7. The length of a curve from $\mathrm{x}=1$ to $\mathrm{x}=4$ is given by $\int_{1}^{4} \sqrt{1+9 x^{4}} d x$. If the curve contains the point $(1,6)$, which of the following could be an equation for this curve?
(A) $y=3+3 x^{2}$
(B) $y=5+x^{3}$
(C) $y=6+x^{3}$
(D) $y=6-x^{3}$
(E) $y=\frac{16}{5}+x+\frac{9}{5} x^{3}$
8. Let R be the region in the first quadrant bounded by the y -axis and the graphs $y=4 x-x^{3}+1$ and $y=\frac{3}{4} x$. Find the perimeter of region R. Show all steps to get your answer.
9. Find the volume of the region enclosed by the function $y^{2}=x+4$ and $y=x-2$ when rotated around the axis $x=10$.
