

In the figure above, R is the shaded region in the first quadrant bounded by the graph of $y=4 \ln (3-x)$, the horizontal line $y=6$, and the vertical line $x=2$.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is revolved about the horizontal line $y=8$.
(c) Find the volume of the solid generated when R is revolved about the vertical line $x=-4$.
(d) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a semicircle. Find the volume of the solid.
(e) Find the perimeter for the bounded region R.

Let R be the region bounded by the graphs of $y=\sqrt{x}$ and $y=\frac{x}{2}$, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line $y=2$.
(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the vertical line $x=4$.
(d) The region R is the based for a solid. For this solid, the cross sections perpendicular to the x-axis are squares. Find the volume of this solid.
(e) Region R can be divided into two equal areas by the line $y=k$. Write, but do not evaluate, an integral express that would find the value of $y=k$.

