\qquad

AP Calculus - Volume or Cross Sections Practice

1. Find the volume of the solid whose base is the region bound by the curves $y=x^{2}$ and $y=8-x^{2}$, and whose cross sections are perpendicular to the x-axis are
(a) Squares
(b) Semicircles
2. Let R be the region bound by the graphs of $y=\frac{1}{\sqrt{x}}$ and the $y=0$ for $4 \leq x \leq 9$. Find the volume of the solid whose base is the region R and whose cross sections are perpendicular to the x-axis equilateral triangles.
3. Let f and g be the functions given by $f(x)=2 x(1-x)$ and $g(x)=3(x-1) \sqrt{x}$ for $0 \leq x \leq 1$. Find the volume of the solid whose base is the region bounded by f and g and whose cross sections are perpendicular to the x-axis are quarter circles.
4. Let R be the region enclosed by the graphs of $y=e^{x}, y=x^{3}$, and the y-axis.
(a) Find the area of R.
(b) Find the volume of the solid with base on region R and cross sections perpendicular to the x-axis. The cross sections are triangles with height equal to three times the length of their base.
(c) Find the volume of the solid with base on region R and cross sections perpendicular to the y-axis. The cross sections are rectangles with height equal to six times the length of their base.
5. Consider the region bounded by the graph of $f(x)=\ln x$, and the lines $x=5$ and $y=0$.
(a) Find the area of this region.
(b) Find the volume of the solid with cross sections perpendicular to the x-axis if the cross sections are semicircles.
(c) Find the volume of the solid with cross sections perpendicular to the y-axis if the cross sections are equilateral triangles.
