1. (a) Given the differential equation $\frac{d y}{d x}=x+2$ and $y(0)=3$. Find the approximation for $y(1)$ by using Euler's method with two equal steps.
(b) Solve the differential equation $\frac{d y}{d x}=x+2$ with the initial $y(0)=3$, and use your solution to find $y(1)$.
2. Use Euler's method and a step size of $\Delta x=0.2$ to compute $y(1)$ if $y(x)$ is the solution of the differential equation $\frac{d y}{d x}+4 x^{3} y=2 x^{3}$ with initial condition $y(0)=2$.
A. 4.8
B. 1.19
C. -12.45
D. 5.67
E. -2.4
3.Given $\frac{d y}{d x}=2 \sin (4 \pi t)$ and $y(1)=2$, approximate $y(3)$ using five equal steps.
A. 8
B. -17
C. -2
D. 17
E. 2
3. Let $y=f(x)$ be the particular solution to the differential equation $\frac{d y}{d x}=x+2 y$ with the initial condition $f(0)=1$. Use Euler's Method, starting at $x=0$ with two steps of equal size to approximate $f(-0.6)$.
4. Consider the differential equation: $\frac{d y}{d x}=2 y-4 x$.

(a) The slope field for the given differential equation is provided. Sketch the solution curve that passes through the point $(0,1)$ and sketch the solution curve that passes through the point $(0,-1)$.
(b) Let f be the function that satisfies the given differential equation with the initial condition $f(0)=1$. Use Euler's method, starting at $x=0$ with a step size of 0.1 , to approximate $f(0.2)$.
(c) Find the value of b for which $y=2 x+b$ is a solution to the given differential equation. Justify your answer.
