Part One: Use the definition of a derivative to find the derivatives of the following.

1.
$$y = 4x^2 + 1$$
 2. $f(x) = \sqrt{4x - 5}$ 3. $y = \frac{1}{x+2}$

Part Two: Find the derivative of each function. Do not use the definition. Use the power, product, and quotient rule.

- 4. $y = 4x^5 + x$ 5. $f(x) = 4x^4 5x 3$ 6. $y = 3x^{\frac{5}{4}}$
- 7. $y = \frac{5}{4}x^{\frac{2}{3}}$ 8. $y = -4x^{-5}$ 9. $y = \frac{3}{x^3}$
- 10. $y = x^{\frac{2}{3}}$ 11. $f(x) = -2\sqrt[4]{x}$ 12. $y = -\frac{1}{2}x^4 + 3x^{\frac{5}{3}} + 2x$
- 13. $y = \frac{2}{2x^4 5}$ 14. $f(x) = \frac{2}{x^5 5}$ 15. $f(x) = \frac{5}{4x^3 + 4}$
- 16. $y = \frac{4x^3 3x^2}{4x^5 4}$ 17. $y = \frac{x^3 x^2 3}{x^5 + 3}$ 18. $y = \frac{x^4 + 6}{3 4x^{-4}}$

19.
$$f(s) = -\frac{3}{s^2} - \frac{4}{s^4}$$
 20. $h(s) = \sqrt{2} \cdot \sqrt[3]{s} + \sqrt{2} \cdot \sqrt[5]{s}$

Part Three: For each problem, you are given a table containing some values of differentiable functions f(x), g(x) and their derivatives. Use the table data and the rules of differentiation to solve each problem.

21. Given $h(x) = f(x) \cdot g(x)$, find h'(3)

x	f(x)	f'(x)	g(x)	g'(x)
1	2	-1	1	2
2	1	$\frac{1}{2}$	3	0
3	3	2	1	-2

22. Given $h(x) = \frac{f(x)}{g(x)}$, find h'(3)

J	x	f(x)	f'(x)	g(x)	g'(x)
	1	3	-1	2	-1
1	2	2	-1	1	0
	3	1	-1	2	1