Day 2 Homework

Do not use your calculator on the following problems.

- On problems 1–5, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. 1. $x = t^2$, $y = t^2 + 6t + 5$
- 2. $x = t^2 + 1$, $y = 2t^3 t^2$
- 3. $x = \sqrt{t}, y = 3t^2 + 2t$
- 4. $x = \ln t, y = t^2 + t$
- 5. $x = 3\sin t + 2, y = 4\cos t 1$
- 6. A curve *C* is defined by the parametric equations $x = t^2 + t 1$, $v = t^3 t^2$. Find: (a) $\frac{dy}{dt}$ in terms of *t*.

a)
$$\frac{dx}{dx}$$
 in terms of t.

- (b) an equation of the tangent line to *C* at the point where t = 2.
- 7. A curve *C* is defined by the parametric equations $x = 2\cos t$, $y = 3\sin t$. Find:

(a)
$$\frac{dy}{dx}$$
 in terms of *t*.

(**b**) an equation of the tangent line to *C* at the point where $t = \frac{\pi}{4}$.

On problems 8–10, find:

(a)
$$\frac{dy}{dx}$$
 in terms of *t*.

(b) all points of horizontal and vertical tangency.

8.
$$x = t + 5, y = t^2 - 4t$$

9.
$$x = t^2 - t + 1$$
, $y = t^3 - 3t$

10. $x = 3 + 2\cos t$, $y = -1 + 4\sin t$, $0 \le t < 2\pi$

On problems 11–12, a curve *C* is defined by the parametric equations given. For each problem, write an integral expression that represents the length of the arc of the curve over the given interval.

11.
$$x = t^2$$
, $y = t^3$, $0 \le t \le 2$
12. $x = e^{2t} + 1$, $y = 3t - 1$, $-2 \le t \le 2$