Day 2 Homework

Do not use your calculator on the following problems.
On problems $1-5$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.

1. $x=t^{2}, y=t^{2}+6 t+5$
2. $x=t^{2}+1, y=2 t^{3}-t^{2}$
3. $x=\sqrt{t}, y=3 t^{2}+2 t$
4. $x=\ln t, y=t^{2}+t$
5. $x=3 \sin t+2, y=4 \cos t-1$
6. A curve C is defined by the parametric equations $x=t^{2}+t-1, y=t^{3}-t^{2}$. Find:
(a) $\frac{d y}{d x}$ in terms of t.
(b) an equation of the tangent line to C at the point where $t=2$.
7. A curve C is defined by the parametric equations $x=2 \cos t, y=3 \sin t$. Find:
(a) $\frac{d y}{d x}$ in terms of t.
(b) an equation of the tangent line to C at the point where $t=\frac{\pi}{4}$.

On problems 8-10, find:
(a) $\frac{d y}{d x}$ in terms of t.
(b) all points of horizontal and vertical tangency.
8. $x=t+5, y=t^{2}-4 t$
9. $x=t^{2}-t+1, y=t^{3}-3 t$
10. $x=3+2 \cos t, y=-1+4 \sin t, 0 \leq t<2 \pi$

On problems 11-12, a curve C is defined by the parametric equations given. For each problem, write an integral expression that represents the length of the arc of the curve over the given interval.
11. $x=t^{2}, y=t^{3}, 0 \leq t \leq 2$
12. $x=e^{2 t}+1, y=3 t-1,-2 \leq t \leq 2$

